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Relationship between surface tension and
energy, interfacial energy and lattice friction
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Department of Mechanical Engineering, and Engineering Materials Group, University of
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Any surface, in order to decrease its surface energy, contracts. It is shown for the first
time that this contraction is formally equivalent to the introduction of a continuous
distribution of surface dislocations. Equilibrium is attained when the increase in strain
energy associated with these surface dislocations just balances the corresponding
decrease due to the reduction in free surface area. Numerical calculations have been
carried out for finite solid and liquid bodies as well as for liquid droplets in contact
with solids. These findings suggest that it is possible to reformulate the behaviour of
liquids in terms of dislocation theory in a much more general way than has hitherto

been done.

1. Introduction

One of the most important properties of a body
involves the nature of its surface. It also seems
clear that a free surface is just a special case of a
more general surface such as a two-phase inter-
face or a grain boundary. It has also been shown
that internal and external surfaces have associated
with them not only surface energy but surface
dislocations as well [1-3]. Thus far, however,
these studies have not been extended to an inter-
nally stress-free body, either a solid or a liquid. It
is the purpose of what follows to provide a unified
approach to such problems and to show their
power, particularly with respect to the liquid state.

2. Surface tension as applied to solid
bodies

The solution to any physical problem involves, for
the most part, getting the geometry right. We will,
therefore, pay particular attention to this
important aspect of the study. To begin with,
consider the reference state body shown in Fig. 1a
which will be denoted by upper case Latin letters,
ie. the (K) state. The (K) state crystal may be
separated or torn along the vertical dotted line to
generate the (KT) state crystal shown in Fig. 1b
which consists of two newly created free surfaces
shown dotted. If a reference or Burgers circuit
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denoted by the path 1-2-3-4-5-6-1 is taken with
respect to the (K) state crystal of Fig. 1la, it
becomes the paths 1°-2-3-4"-1" and 1-4-5-6-1 in the
(KT state crystal of Fig. 1b. The dotted arrows
along the lengths 4-1 and 1'-4’ in Fig. 1b, which
correspond to closure failures in the circuit,
measure the amount of newly created free surface
occasioned by the tearing process. It is important
to note that the measure of length or metric
tensor agy, is unaltered by the tearing process,
where agy, is related to distance ds as follows

(ds)? = agq,dx®dx? )]

and where dx¥ are simply co-ordinates, i.e. the
number of spacings between two given points. For
example, dx? corresponding to the distance 5-6
in Fig. 1a is simply 4.

The dotted surfaces in Fig. 1b are assumed to
possess no surface energy and therefore remain
unaltered by the tearing process. If, however, this
restriction is lifted, the (K*T) configuration shown
in Fig. 1c obtains. In particular, in order to reduce
the surface energy associated with the newly
created free surfaces, they try to reduce their
length. This, in turn, is opposed by the matter
within the body where such considerations do
not apply. The torn bodies thus undergo elastic
distortion near their free surfaces which can be
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Figure [ (a) Perfect reference state body. (b) (K) state configuration of (a) after perfect tearing with surface tension
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represented in terms of a uniform array of
virtual surface dislocations shown dotted in
Fig. 1c. The dislocations are termed virtual since
they have no extra half planes associated with
them {4]. The distortions associated with the
surface tension are, in fact, elastic and can be
represented by a strain tensor egy, defined as
follows [5]

exy, = 3 (bxL —ox1) 2

where bETET is the metric tensor associated
with the (KTT) state. The metric tensor can
always be found from the following relation-
ship:

PETET = Tl ®
where ek are the base vectors associated with
the (KTT) state which, as is evident from Fig. 1c,
are not always unit vectors.

The characteristic feature of an elastic
distortion is that it may be represented in terms
of a varying metric tensor br 2.1 which depends
upon position. On the other hand, any elastic
.distortion may be represented in terms of
dislocations [6]. This is most easily seen by
reference to Fig. 1d which shows that portion of
Fig. lc within the reference circuit, but re-
presented in terms of a different co-ordinate
system. This will be denoted as state (KTTC). It
is apparent that the (K*T)— (KTTC) state trans-
formation is simply a co-ordinate transformation

. T . .
given by C}é:f-rrc which connects the co-ordinates
and base vectors as follows:

gTTC xTT

R S (42)
and
eIT = cElfcegrr (4b)
where
CETtc CLrr = s&ira, ()

and where 6%&?1% is simply the Kronecker delta.
The transformation tensor cﬁﬁc is chosen such
that the (KTTC) state of Fig. 1d possesses a
common metric tensor, except, of course in the
vicinity of the dislocation cores. The imposition
of a common metric is also equivalent to the
imposition of a common reference lattice. This
reference lattice, shown in Fig. 1d, can be sub-
divided indefinitely, in which case the dislocation
array becomes continuous. In the case of Fig. 1d,

however, there are only four dislocations between
points 5-6 and 2-3 as indicated by the dotted
arrows. Since the (K*T) - (KT°) transformation
is merely a co-ordinate transformation, the strain
tensor associated with it vanishes. In terms of Fig.
1d, therefore, surface tension is seen to arise from
an array of surface dislocations which form so as
to reduce the length of free surface and thus
lower the surface energy. It is important to note
that in this model, surface tension and surface
energy are two separate but interrelated concepts.
Fig. 2 shows the atomistic counterpart of the
continuous model depicted in Fig. 1d. It is
important to note here that the extra half plane
associated with each of the two free surfaces is
in part uniformly distributed over both these
surfaces in agreement with the dislocation re-
presentation of Fig. 1d.

3. Interfacial tension as applied to solid
bodies

Let us now consider the elastically strained (k)
state shown in Fig. 3a which will be designated
by lower case Greek letters. It may be visualized
as being generated from the (K) state of Fig. 1a
by having the rightmost half of the body undergo
a phase change. The phase change is such that the
vertical dimensions of the body decrease in length.
It is also clear from Fig. 3a that the two phases are
perfectly coherent across the interphase boundary,
i.e. the displacements are continuous across the
boundary. It is also possible to represent the
distortion across the boundary in terms of an
array of virtual dislocations shown dotted in much
the same way as was done in Fig. 1c. Since these
are not real dislocations, the reference circuit
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Figure 2 Representation of Fig. 1d in terms of a discrete
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Figure 3 (a) Fully coherent two-phase interface boundary. (b) (k) state configuration of (a) drawn in terms of a common
lattice. (c) (k) state configuration of (a) after addition of crystal lattice dislocations to remove long range strains. (d) (k)
state configuration of (c) drawn in terms of a common lattice. (e) (k) state configuration of (c) after complete annihi-
lation of misfit and interface dislocations. (f) (k) state configuration of (e) drawn in terms of a common lattice. (g)
Semi-coherent configuration intermediate between those shown in (c) and (¢). (h) (x) state configuration of (a) after
perfect tearing with surface tension present.
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1-2-3-4-5-6-1 in Fig. 3a contains no closure failure.
However, similar to Fig. 1d, we are able to
construct a common lattice as shown in Fig. 3b
where it is now possible to represent the coherent
two-phase interface in terms of an array of surface
dislocations, or perhaps more appropriately, an
array of interface dislocations.

The coherent interface of Fig. 3a contains long-
range strains which can be removed by the
addition of misfit dislocations, which are in fact
crystal lattice dislocations (CLD), to the right-
most phase as shown by the solid dislocation
symbols in Fig. 3c. Such states that contain misfit
dislocations will be denoted by lower case Latin
letters, i.e. (k). As anticipated, the Burgers circuit
in Fig. 3c picks up the single misfit shown by the
dotted arrow along line 2-3, but fails to detect the
virtual dislocations. If, however, the (k) state is
represented in terms of a common lattice by some
suitable co-ordinate transformation, the (k) state
shown in Fig. 3d obtains. It follows from this
figure that the misfit dislocations of strength four
is just balanced by four interface dislocations,
thus accounting for the absence of long-range
distortions. Important to note is that the inter-
phase boundaries in Fig. 3¢ and d, in spite of the
fact that they contain misfit dislocations, are still
fully coherent. The boundary, however, can be
made fully noncoherent by allowing the virtual
dislocations in Fig. 3¢ to combine with the misfit
dislocations so as to generate the (k') state con-
figuration shown in Fig. 3e. The Burgers circuit
portion of this same figure is again reproduced in
Fig. 3f but in terms of a common lattice. Note
that since the interface dislocations of opposite
sign combine completely with one another, as
contrasted with Fig. 3¢ and d, all traces of elastic
distortion are removed. The configurations of
Fig. 3c and d, on the one hand, and Fig. 3e and f
on the other, represent limiting cases of arbitrarily
large and vanishingly small interface energies,
respectively. In the former case, the interface
dislocations cannot move since they create faults,
ie. the atoms are not in line with one another
across the interface. In the latter case, they move
with no restriction since this energy is vanishingly
small. In the case of intermediate interfacial
energy, the (k%) state configuration shown in
Fig. 3g obtains. Here, only a portion of the
interface dislocations move to the misfit dis-
locations and annihilate with it [2]. The re-
construction of Fig. 3g in terms of a common
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lattice is rather straightforward and will therefore
be omitted.

It is now clear at this point that the non-
alignment of atoms across the boundary in Fig. 3e
and g gives rise to an interphase energy which is
analogous to the surface energy of Fig. 1c. Since
this energy also restricts the movement of inter-
face dislocations, it may also be viewed as giving
rise to a lattice friction force acting on these
dislocations. Finally, for completeness, Fig. 3h
shows the perfectly torn state of Fig. 3a. The
surface tension has caused the length of both
surfaces to decrease with the subsequent
generation of surface dislocations in much the
same manner as that described for the perfect
reference body of Fig. 1c. Analogous tearing could
also be performed on the states shown in Fig. 3b
to g with and without surface tension present to
yield similar results which, for convenience will
be omitted here.

4. Analysis of the surface energy associated
with a finite solid of arbitrary shape
A discrete dislocation analysis of the surface
energy associated with a finite body is based on
the earlier models developed for an externally
applied stress or for an internal source of stress
[3]. It has been verified therein that the distortion
arising from any source of stress in a finite solid
can be represented in terms of two sets of surface
dislocations with mutually orthogonal Burgers
vectors situated on the surface of the solid [1, 7] .
The elastic stress field within a finite body due
to the effects of surface energy can be obtained
by first considering an infinite stressed body. A
region within the infinite body, ABCD, of the
same dimensions as the finite body is chosen as
shown in Fig. 4a. The attractive force offered
by the surrounding medium on the surface of
the finite region ABCD is illustrated by the arrows
corresponding to the component oy, . The ideas
developed using this particular stress component
are also applicable to the other components of
stress. Fig. 4a shows schematically the two
dislocation arrays required to maintain continuity
of displacements in the finite region and around it.
While such arrays are present everywhere along
the boundary of the region ABCD, only one set
is shown in order to simplify the figure. The
two dislocations to the right of the boundary
belong entirely to region ABCD while the two
to the left of the boundary belong to the infinite
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Figure 4 (a) Schematic ilustration of the two surface dislocation arrays in region ABCD and surroundings which form
in order to maintain continuity of displacements and to satisfy the surface boundary conditions. The dotted symbols
correspond to that portion of the dipole which decreases the free surface area. The full line representation cotresponds
to the edge dislocations which are responsible for the stress field. (b) The finite region is cut from the infinite region
and separated from it. (c) Same as (b) except that a prismatic loop is nucleated in the finite region ABCD and allowed
to expand and annihilate with a dislocation in the dipole and form an extra plane of material. (d) The finite region is
inserted back into the infinite medium. (e) Same as (d) but after a reverse stress is applied to eliminate the dislocations
of opposite sign. (f) The finite region ABCD is removed and opposite stresses maintained in order to satisfy the
boundary conditions on the surface of the hole ABCD. The surface arrays are distributed on the surface of the finite

region to yield the required stress field.

body. Of the two dislocations, the one with the
dotted representation corresponds to the reduced
free surface [7] while the one with the full line
representation gives the stress field. The surfaces
are now stress free so that the region ABCD can
be cut from the infinite body, as shown in Fig. 4b.
A prismatic loop is next introduced into the finite
region ABCD so that when the prismatic loop
expands, the dislocations with opposite signs an-
nihilate, in turn leaving a dislocation on the
surface, as shown in Fig. 4d. Now the finite region
ABCD can be inserted back into the infinite body
as shown in Fig. 4d. As a next step, the infinite
body is subjected to reverse stresses so that the
finite region will now be associated with the
dislocation array, as shown in Fig. 4e. Finally,
the finite region ABCD containing the dislocation
array is taken out of the infinite body with

opposite stresses maintained on the surfaces of the
hole in the infinite body, as shown in Fig. 4f. The
region ABCD containing the surface dislocation
array, now represents the state of stress in a
finite body with constant compressive stresses.
The stress field due to the dislocation array on
the surface of the finite body balances the com-
pressive stress arising from the absence of the
surrounding medium which, in turn, is also the
same as the effect of surface energy. It is useful
at this stage to employ a different notation to
indicate the origin of the stress, namely o;; which
arises due to the presence of surface dislocations
and of; as that arising from the absence of the
surrounding medium. These two are equal on the
surface as shown in Fig, 4f. The fundamental
relation between the dislocations and the surface
energy is easily obtained by considering the total
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energy of the medium, which consists of the strain
energy and the surface energy. The strain energy
term can be written in its most general form as
E, = %J oyeydv = % J 0;u;n;ds
v 8

where v is the volume of the solid and s is the
surface area surrounding the solid. It is useful to
know that o;; in the volume integral corresponds
to the stress everywhere within the finite region,
while this same quantity in the surface integral
corresponds to the stress on the surface. It is the
surface integral representation which is helpful
in relating the effect of surface energy to surface
stress. The surface energy contribution can be
put in the form

E, = — J‘s vds.
The equilibrium configuration is obtained by
noting

dfe dEy

bk Diunndt S

that
ds ds sotha

oyuin; = 7. (6)
In Equation 6, g;n; is the force per unit area
acting on a plane whose normal is n;, and Fu;,
where F; = o;n;, has the dimensions of force per
unit length, the same as that for surface tension.
Specifically, for i = 1, Equation 6 can be written

as (7)

The above equation is valid for a finite solid. If
the finite region corresponds to that of a liquid,
the shear stress components vanish,i.e. 64, = 0s0
that oy u,n; = v indicating that only hydrostatic
stresses maintain the surface tension within a
liquid of finite dimension.

The fundamental relation given by Equation 6
between the stresses in a solid and the surface
tension can also be reformulated in terms of
dislocations arising from surface energy effects as
illustrated in Fig. 4f, The stress field due to the
dislocation array on the surface gives rise o the
strain energy within the finite medium and the
decrease in surface associated with the dislocations
accounts for the decrease in surface energy.
Previous dislocation models of surface tension
[8] involved the presence of crystal dislocations
situated at some distance from the surface by two
or three atoms. This restriction becomes somewhat
artificial in view of the definition of a surface
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dislocation which can, in fact, remain on the
surface and not necessarily have associated with it
an extra half plane of atoms, i.e. be in the form of
a crystal lattice dislocation. The discrete dislo-
cation analysis is carried out by minimizing the
total energy required to infroduce surface
dislocations onto the surface. In particular

Ep = Eo+E (8)
Y

where

Ee = ES +E1, so that ET=ES +EI +E'y,

©)

where Eg is the self energy and £ the interaction
energy of the dislocation array while E, cor-
responds to the increase in surface energy due to
presence of the dislocations. These results may be
ilustrated for the array with Burgers vector
parallel to the surface for which

N x N
Eg+Ey =), f Teybidx; = ) Toybyx;
i=1 “-R i=1
(10)

where N is the total number of dislocations, R is
the size of the crystal, and 7., the shear stress
acting on each dislocation. The dislocation with
Burgers vector b; is considered as being brought
from infinity to the position x;. For simplicity in
the above equation, 7, is assumed to be constant.
The surface energy lost due to the formation of
the dislocations can be written as

If 7%y is the shear stress arising from surface
energy effects, namely that represented by arrows
pointing towards the finite region ABCD in Fig. 4f,
the above equation takes the alternate form
N
E, = —i_Zl 75, b;x;. (12)
The total energy of the configuration Eq given
by Equation 8 can be minimized with respect to
the Burgers vectors and postion co-ordinates of
each dislocation so that 7,, = 73,, i.e. the shear
stress due to the array is balanced by the surface
shear stress due to surface energy. Similar
reasoning can be extended to the other components
of the stress field.
The results shown in Fig. 5a indicate that the



- Iﬁ-c
D
T T
E ':TT T T TT:143* 5,6.7,8
= -,
[ -
4004 x
'—
'-..
E =
¥ adl L L I R B?
- i
b= 0.03682 A bs=0.1055x10"7 &

bp= 003788 A bg=0.100x1077 A

by=0.03958 A b7=0.1539x 1077 A

b 4= 0.04580 & bg = 0.2749x1077 A

fa)

b, = 007772 A

56
by 007762 & —_— Tl T,
b= 0.07824 A N .

bg= 009747 A
bs=004173 & - - 2
bg = 0.05223 A

F 4 i
4004 X
F 4
e-100 A
- 4
y - -4
Y "
s 6 s -
+ I T T T4
r 4 3
- 42
b, =0.05411 A
h 1 b, 0.05456 A
004 2 X b3=0.056644
le—200A 30
3 - .
bg=006982 &
N 4 bg=0046854
be =0.06257 A
4y 3
L 1
(b)

Figure 5 (a) Surface dislocation arrays obtained using the discrete dislocation method of analysis of surface energy. The
numbers shown beside each dislocation are used as a subscript to b to indicate the Burgers vector. The value of the
Burgers vector of each dislocation is shown. The arrays on all the four faces occupy identical positions due to the
symmetry of the square body. The dislocations with numbers 5 and 6 are very close so that they are represented as one.
(b) Same as (a) except that the finite body is rectangular and the secondary array is absent. Two bodies with different

width are shown.

major effect of surface energy is to generate a
dislocation array with Burgers vectors parallel to
the surface, also called the primary array. The
dislocations in the array with Burgers vectors
perpendicular to the surface have very small
Burgers vectors and for this reason are called the
secondary array. The results of the discrete dislo-
cation analysis for a body with rectangular shape
are shown in Fig. 5b where only the primary array
is determined since the secondary array has
negligible Burgers vector. The primary array is
again found to remain uniform except at the
corners. It can also be concluded that the Burgers
vector of the array increases with decreasing
thickness of the finite body as seen from Fig. 5b.
The o,, component of stress for the arrays shown
in Fig. 5a and b is plotted as shown in Fig. 6a and
b, respectively. These shear stresses are seen to

become smaller in the interior of the finite body.
The stress level in a finite body with smaller
thickness is higher due to the larger Burgers vector
of the primary array. Fig. 6¢ shows the o,,
component of stress due to the array given in
Fig. 5a. The stress level again falls off rapidly with
distance from the surface. The above results enable
us to conclude that the stress components on the
surface of a finite solid reach a value equal to
the surface stress developed due to the presence
of surface energy. However, the stress components
decrease rapidly from the surface of the finite
body into the interior.

4.1. Numerical analysis of the surface
energy associated with a liquid of
finite dimensions

The surface dislocation model developed for a
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Figure 6 (a) The g, component of the stress field
due to the array shown in Fig. 5a plotted at various
stress levels. Three stress levels plotted in units of
107*G/4n(1 —v) are 0.1, 0.5 and 1. The dotted
representation indicates the negative stress levels
and the full line representation corresponds to the
positive values. A full line between a dotted line
and a full line indicates zero stress level. The figure
is drawn to scale. (b) Same as (a) except that the
array corresponds to Fig. 5b with width equal to
200 A. (c) The o,, component of the stress field
due to the array shown in Fig. 5a plotted at various
stress levels. The four stress levels plotted in units of
1072 G/4w(1 —v) are 0.1, 0.5, 1 and 2. The re-
presentation of the stress levels is the same as
in (6a).



finite solid can easily be extended to a liquid of
finite dimensions. In the past, the properties of
dislocations have been used to determine viscosity
in terms of a heavily dislocated crystal [9]. In
order to illustrate the discrete dislocation analysis
with respect to the surface tension of a liquid of
finite dimensions, a two dimensional circular film
is considered, as shown in Fig. 7a. The surface
dislocations are distributed uniformly along the
circumference of the body.

The circular region is divided into 36 sectors,
each containing a dislocation with Burgers vector
tangential to the surface. Let the initial radius be
7o and the sum of the Burgers vectors of all the
surface dislocations be b. The array shown in
Fig. 7a does not have a resultant shear stress
component inside the circular region. The
hydrostatic pressure due to the array, represented
by a constant P, contributes to the strain energy
as follows,

E, = Pb(ro —b/2m)2. (13)

The surface energy lost due to the formation of
the disiocation array is

E, = vb. (14)

The balance of strain energy with loss of surface
ener, ives
EYBVES b = 2n(re —24/P), (15)

in turn connecting the total Burgers vector of the
surface array to the initial radius and the surface
energy. The pressure P is a function of the
distribution of the surface array. The results of the
discrete dislocation analysis are presented for two
different liquids, as shown in Fig. 7.

It is now a simple procedure to determine the
shape of a drop of liquid lying on the surface of a
solid. Fig. 8a is a schematic illustration of the
surface dislocation arrays present on the surfaces
of the liquid droplet and the finite solid. The array
on the surface of the liquid droplet maintains the
hydrostatic pressure within the liquid droplet and
the two arrays on the surface of the solid maintain
the surface stresses on the surface of the solid.
The dislocation array at the interface screens
the stress components so that only hydrostatic
stresses are present in the liquid medium. The
angle 6 shown in the figure corresponds to the
contact angle.

Fig. 8b shows the shape of the droplet deter-
mined from a discrete dislocations analysis. The
surface arrays on the surfaces of the solid are

neglected in order to simplify the calculation. It
should also be pointed out that when the
dimensions of the finite solid are large compared
to that of the liquid region, the Burgers vector of
the surface arrays on the solid become very small
due to the high shear modulus of the solid.

The computational procedure in the deter-
mination of the shape of the droplet consists of an
initial circular droplet which is allowed to settle
on the surface of a solid and to alter its shape,
maintaining constant volume while minimizing the
total energy of the configuration. The array shown
in Fig. 8b in the liquid medium has no resultant
shear stress component. The hydrostatic pressure
due to the array represented by a constant P,
contributes to the strain energy

P (%
B = fe [R6)—b )] 5(6)d6  (16)

where R (0) and 8 are the co-ordinates of a point
on the surface from the reference co-ordinate
system chosen in the liquid medium and b () is
the Burgers vector of the dislocation present on
the surface at that point. 8, and 8, are the angles
shown in Fig. 8a. The surface energy lost due to
the formation of the surface dislocation array is
0

Ey =i [ b(0)ds (17)
where 7; is the surface energy of the liquid—
vacuum interface. At the interface

Yibscos by = (y3 —72)bs,

o

ro = 10004
y=725  p=15xi0° b;-0023 &
y=480  w=25x10° bi-0098 1

Figure 7 A two-dimensional circular film of liquid of
radius #,. Surface dislocations each of Burgers vector b;
are spread along the circumference at equal intervals of
10°. The value of b; for two sets of liquids is shown in
the figure.
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Figure 8 (a) Schematic illustration of the surface dislocation model of a liquid droplet on the surface of a solid of
finite dimensions. The surface dislocations on the surface of the liquid have their Burgers vectors tangential to the
surface. The two sets of surface dislocation arrays with Burgers vectors mutually orthogonal to each other on the
surface of the solid maintain the surface stresses within the solid. The interface array has the Burgers vector patallel
to the interface so that the shear stresses from the solid are screened and only hydrostatic stresses are present within
the liquid. (b} Shape of a liquid droplet lying on the surface of a solid with contact angle equal to 53°. One half of
the region of the droplet is divided into eight sectors. The co-ordinates 7;, 6; and the Burgers vector b; of a dislocation
in each sector are shown in Table I for the indicated values of v,, v, and v,. (c) Shape of a droplet of liquid on the
surface of a solid with contact angle equal to 124°. The co-ordinates r;, 8; and the Burgers vector b; of a dislocation
in each sector are shown in Table IT for the indicated values of v,, v, and v,.

which determines the contact angle 8 equal to
180 — 8, . In Equation 18, v, is the surface energy
of the liquid—solid interface, v5 that of the solid—
vacuum interface, and by the sum of the Burgers
vectors of the dislocations at the solid—liquid
interface. When the contact angle 6 is 180 degrees,
the droplet becomes a two dimensional circular
film with R(0)=r,, b(8)=b/2n, 6, =0 and
6, = 2w so that Equations 13 and 14 are obtained
from the above analysis.

In order to facilitate the computation, the area
comprising one half of the droplet was divided
into eight sectors. Within each sector the Burgers
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vector of the surface dislocation is tangential to
the surface of the droplet. The radius vector r; and
the angle 0; in each sector are varied along with
Burgers vector b; so that the total energy of the
medium remains at its minimum. Table I shows
the results of the discrete dislocation analysis and
Fig. 8b illustrates the shape of the droplet drawn
to scale. The shape of the droplet depends on the
relative values of vy;, vy, and v, as indicated in
Table [. In particular the shape for y; >y, is
shown in Fig. 8c and Table II gives the results
obtained by minimization of the total energy. The
present results agree closely with the classical



TABLE 1 The radius vector r;, the angle ¢; and the Burgers vector b; in each of the eight sectors in one half of the

liquid droplet. v, = 72.5,v, = 80 and v, =40

1 2

3 4 5 6 7 8
r;(A) 500 1453 1740 1782 1782 1790 1797 1782
0;(radians) 1.219 0414 0.275 0.317 0.223 0.124 0.136 0.436
b;(A) 0.001 0.747 0.240 0.001 0.002 0.003 0.130 0.067
ds of . e .
methods of analysis [10] if it is noted that the 7¢ = (@G, b/27d) sin 2nD/by)  (20)

Burgers vector of the surface dislocations is very
small compared to the radius of curvature in
Equation 15 so that r, = 27v/P.

The results of the discrete dislocation analysis
when applied to solids and liquids illustrates the
use of surface dislocations in representing the
resultant stress field that arises due to surface
tension. The surface dislocation representation
includes both the strain energy and the surface
energy in the total energy of the medium.

4.2. Numerical analysis of the dislocation
configuration associated with a
two-phase interface

The structure of a semi-coherent interface in terms

of the rearrangement of interface dislocations

and partial annihilation with the misfit dislocation,
as elucidated earlier, will be analysed using the
discrete dislocation method of analysis. The
method of continuous distribution of dislocations
has already been employed earlier to determine

the structure of a semi-coherent interface [2].

However, the frictional stress required to prevent

the complete annihilation of interface dislocations

with the misfit dislocations has been assumed to
be of a simple form so as to obtain closed form
solutions for the relevant singular integral equation.

It is to be realized that the frictional stress and

interface energy are not different entities and

should be related by

Teh; = v (19)

where 7¢ is the frictional stress, b; the Burgers
vector of the dislocation responsible for the
formation of the step and v the interfacial energy.
The frictional stress required to move a dislocation
can be assumed to be of the familiar form [2],

where @ is the disregistry produced between any
two atoms across the interface, by, the Burgers
vector of the misfit dislocation, d the repeat
distance between misfit dislocations and «, a
parameter used to change the magnitude of the
frictional stress. Analytical solutions to the
integral equation giving the equilibrium distri-
bution of interface dislocations could not be
obtained using Equation 20. Therefore, the
discrete dislocation method was employed to
determine these equilibrium configurations. The
dislocation model employed is shown in Fig. 3g
where three misfit dislocations along with the
interface dislocations around them are considered.
The total energy, Er, of the configuration in the
centre consisting of a misfit dislocation and the
accompanying interface dislocations is minimized.
In particular

Ey = Eg+Eym +Ey1 T Ep, 21)

where Eg is the self energy of the interface array
and the misfit dislocation, £y the interaction
energy of the interface array with the misfit
dislocations, EI_,I the interaction energy of each
dislocation in the interface array with other
dislocations and £ the frictional energy expended
in moving the interface array against 7¢. In the
determination of the interaction energy terms with
neighbouring arrays, care should be exercised in
considering only one half of the energy terms
since the interaction energy is shared by both the
regions. The frictional stress acting on each
dislocation depends on the step already produced
by the movement of preceding interface dislo-
cations. The resultant dislocation configuration
obtained using G, =7.14 x 10"* dyncm™ and

TABLE II The radius vector 7;, the angle 6; and the Burgers vector b; in each of the eight sectors in one half of the

liquid droplet. v, = 72.5,v, = 60,v, = 80

1 2 3 4 5 6 7 8
r;(A) 14 3382 3154 2923 2595 2005 1591 1162
6;(radians) 1.568 0.067 0.141 0.087 0.122 0.248 0.165 0.744
b;(A) 0 0.0017 0.2074 0.1643 0.0010 0.0010 0.1555 0.1497
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PHASE |

{a}

PHASE | -

(b}

v, =v; =0.333 is shown in Figs. 9 to 12 for two
combinations of the shear moduli of the two
phases and various values of «. The step height
produced by the movement of each interface
dislocation is also shown. The interface dislo-
cations are found to stop at positions where a step
would have been created if further movement of
the dislocation took place and thus expend
frictional energy or create equivalent interfacial
energy. The number of interface dislocations
remaining after annihilation increases with
increasing friction as illustrated by the increase in
value of @ and decreases with increasing shear
modulus of the second phase G,.

While the general results of the present
calculations employing discrete  dislocation
methods agree with those obtained earlier [2], the

PHASE |

PHASE | [ od

Figure 10 (a) As Fig. 92 but with « = 5. (b) As
(a) but with o = 10.
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Figure 9 (a) The structure of the interface con-
sisting of the interface and misfit dislocations in
the semi-coherent state for G, =G, and a = 1.
(b) As (a) but with o = 2.

PHASE 2

PHASE 2

details of the dislocation configuration at the
interface are different due to different form of
frictional stress used in the present analysis. It
should also be pointed out that the misfit dislo-
cation is assumed to be nucleated at the interface
in the present calculations.

5. Conclusions

The formation of any new surface involves the
breaking of atomic bonds, which in turn increases
the energy of the body. In order to minimize this
surface energy, the total area of the surface
decreases, in turn giving rise to an internal stress
within the body. It is shown that the decrease in
surface area is equivalent to the introduction of a
continuous distribution of surface dislocations on
the surface of the body. It is the surface dislo-

PHASE 2

(a)

PHASE 2

{b)



Figure 11 (a) As Fig. 9a except G, = 10G, and
@ =1.(b) As (a) but with & = 2.

aaf—
PHASE | [ = PHASE 2
{a)
N T e
o
PHASE 1 [ ot PHASE 2

(b)

cations which give rise to the strain energy within
the body. Equilibrium is established when the
increase in this strain energy is just balanced by
the corresponding decrease in surface energy
occasioned by these surface dislocations. This
decrease in surface energy is also related to the
stresses acting on the free surface of the body,
i.e. surface tension. In general, for a solid with
an arbitrary shaped surface, all components of
stress are present within the body, whereas for
a liquid, no shear stress components are allowed,
so that the surface of the liquid must adjust its
shape accordingly. Numerical calculations have

been carried out for all of the cases as well as for
liquid droplets in contact with solids. These same
free surface energy considerations apply also to
external surfaces such as interphase boundaries.
Under these conditions, interphase boundary
dislocations, which are the equivalent of surface
dislocations, are formed. Rearrangement of these
boundary dislocations can occur so as to lower
the elastic strain energy, but only at the expense
of increasing the surface energy of such boundaries.
The resistance to the motion of these dislocations
is equivalent to a lattice friction stress acting
within the boundary. This detailed model of an

—
e AR
PHASE ! PHASE 2
()
e
- T
PHASE | | o PHASE 2

Figure 12 (a) As Fig.
As (a) but with & = 10.

11a but with o = 5. (b)

{b)
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interphase boundary allows an exact description
to be given for a fully coherent, a fully incoherent
and a partially coherent interface.

Acknowledgements

The computer time for the project was supported
in full through the facilities of the Computer
Science Center of the University of Maryland.
Financial support for the present study was
provided by the U.S. Department of Energy under
Contract No. AT-(40-1)-3935.

References
1. K. JAGANNADHAM and M. J. MARCINKOWSK]I,
Phys. Stat, Sol. 50 (1978) 293,
2. Idem, J. Appl. Phys. 48 (1977) 3788.
3. Idem, Mat. Sci. Eng, (1o be published).

1732

4. M. J. MARCINKOWSKI, “Fundamental Aspects of
Dislocation Theory”, NBS Special Publication No.
317, Vol. 1, edited by J. A. Simmons, R. deWit and

R. Bultough (1970) 531.

5. Y. C. FUNG, “Foundations of Solid Mechanics”

(Prentice Hall, New Jersey, 1965).

6. M. I. MARCINKOWSKI, “Unified Theory of the
Mechanical Behaviour of Matter”, (Wiley, New York,

1978).
7. Idem, Acta Mech. (to be published).

8. C. HERRING, “Physics of Powder Metallurgy™,
edited by W. Kingston (McGraw Hill, New York,

1951) Ch. 8, p. 143.
9. W.SHOCKLEY, “L’Etat Solide™, p. 431.

10. A. H. COTTRELL, “The Mechanical properties of

Matter” (Wiley, New York, 1964) Ch. 8.

Received 20 October and accepted 20 November 1978.



