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Relationship between surface tension and 
energy, interfacial energy and lattice friction 

K. J A G A N N A D H A M ,  M.J. M A R C I N K O W S K I  
Department of Mechanical Engineering, and Engineering Materials Group, University of 
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Any surface, in order to decrease its surface energy, contracts. It is shown for the first 
time that this contraction is formally equivalent to the introduction of a continuous 
distribution of surface dislocations. Equilibrium is attained when the increase in strain 
energy associated with these surface dislocations just balances the corresponding 
decrease due to the reduction in free surface area; Numerical calculations have been 
carried out for finite solid and liquid bodies as well as for liquid droplets in contact 
with solids. These findings suggest that it is possible to reformulate the behaviour of 
liquids in terms of dislocation theory in a much more general way than has hitherto 
been done. 

1. Introduction 
One of the most important properties of a body 
involves the nature of its surface. It also seems 
clear that a free surface is just a special case of  a 
more general surface such as a two-phase inter- 
face or a grain boundary. It has also been shown 
that internal and external surfaces have associated 
with them not only surface energy but surface 
dislocations as well [ 1 -3 ] .  Thus far, however, 
these studies have not been extended to an inter- 
nally stress-flee body, either a solid or a liquid. It 
is the purpose of what follows to provide a unified 
approach to such problems and to show their 
power, particularly with respect to the liquid state. 

2. Surface tension as applied to solid 
bodies 

The solution to any physical problem involves, for 
the most part, getting the geometry right. We will, 
therefore, pay particular attention to this 
important aspect of the study. To begin with, 
consider the reference state body shown in Fig. la 
which will be denoted by upper case Latin letters, 
i.e. the (K) state. The (K) state crystal may be 
separated or torn along the vertical dotted line to 
generate the (K T) state crystal shown in Fig. lb 
which consists of  two newly created free surfaces 
shown dotted. If  a reference or Burgers circuit 
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denoted by the path 1-2-3-4-5-6-1 is taken with 
respect to the (K) state crystal of Fig. l a, it 
becomes the paths 1'-2-34'-1'  and 1-4-5-6-1 in the 
(K a') state crystal of Fig. lb. The dotted arrows 
along the lengths 4-1 and 1'-4' in Fig. lb,  which 
correspond to closure failures in the circuit, 
measure the amount of newly created free surface 
occasioned by the tearing process. It is important 
to note that the measure of length or metric 
tensor aKL is unaltered by the tearing process, 
where aKL is related to distance ds as follows 

(ds) 2 = aKLdXKdx L (1) 

and where dx K are simply co-ordinates, i.e. the 
number of spacings between two given points. For 
example, dx z corresponding to the distance 5-6 
in Fig. 1 a is simply 4. 

The dotted surfaces in Fig. lb are assumed to 
possess no surface energy and therefore remain 
unaltered by the tearing process. If, however, this 
restriction is lifted, the (K w:r) configuration shown 
in Fig. 1 c obtains. In particular, in order to reduce 
the surface energy associated with the newly 
created free surfaces, they try to reduce their 
length. This, in turn, is opposed by the matter 
within the body where such considerations do 
not apply. The torn bodies thus undergo elastic 
distortion near their free surfaces which can be 
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Figure 1 (a) Perfect reference state body. (b) (K) state configuration of (a) after perfect tearing with surface tension 
absent. (c) (K T) state configuration of (b) but with surface tension present. (d) (K TT) state configuration of (c) 
redrawn in terms of a common lattice. 
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represented in terms o f  a uniform array of 
virtual surface dislocations shown dotted in 
Fig. lc. The dislocations are termed virtual since 
they have no extra half planes associated with 
them [4]. The distortions associated with the 
surface tension are, in fact, elastic and can be 
represented by a strain tensor eKL defined as 
follows [5]: 

eKt, = �89 (bKL --aKL) (2) 

where hTTTT "K L is the metric tensor associated 
with the (K TT) state. The metric tensor can 
always be found from the following relation- 
ship: 

bTT TT TT TT I,Z L = e~ .e L (3) 

where e~z T are the base vectors associated with 
the (K TT) state which, as is evident from Fig. lc, 
are not always unit vectors. 

The characteristic feature of  an elastic 
distortion is that it may be represented in terms 

~.TTa'a" which depends of a varying metric tensor v K r~ 
upon position. On the other hand, any elastic 
distortion may be represented in terms of 
dislocations [6]. This is most easily seen by 
reference to Fig. ld which shows that portion of 
Fig. l c within the reference circuit, but re- 
presented in terms of a different co-ordinate 
system. This will be denoted as state (KITe).  It 
is apparent that the (K TT) -+ (K TTc) state trans- 
formation is simply a co-ordinate transformation 

~KTT 
given by C'KTT C which connects the co-ordinates 
and base vectors as follows: 

dx KTTc ~K TTC dxK TT 
= C'KTT (4a) 

and 

where 

eTTC K TT = CKTTCeKTT (4b) 

c K T T  LTTC : ~L TTC 
KTTC CKTT KTTC, (5) 

LTTC 
and where e)KTTC is simply the Kronecker delta. 

~KTT 
The transformation tensor (./KTTC iS chosen such 
that the (K TTc) state of Fig. ld possesses a 
common metric tensor, except, of course in the 
vicinity of the dislocation cores. The imposition 
of a common metric is also equivalent to the 

imposition of a common reference lattice. This 
reference lattice, shown in Fig. ld, can be sub- 
divided indefinitely, in which case the dislocation 
array becomes continuous. In the case of  Fig. ld, 

however, there are only four dislocations between 
points 5-6 and 2-3 as indicated by the dotted 
arrows. Since the (K TT) ~ (K TTc) transformation 
is merely a co-ordinate transformation, the strain 
tensor associated with it vanishes. In terms of Fig. 
ld, therefore, surface tension is seen to arise from 

an array of surface dislocations which form so as 
to reduce the length of free surface and thus 
lower the surface energy. It is important to note 
that in this model, surface tension and surface 
energy are two separate but interrelated concepts. 
Fig. 2 shows the atomistic counterpart of the 
continuous model depicted in Fig. l d. It is 
important to note here that the extra half plane 
associated with each of the two free surfaces is 
in part uniformly distributed over both these 
surfaces in agreement with the dislocation re- 
presentation of Fig. 1 d. 

3. Interfacial tension as applied to solid 
bodies 

Let us now consider the elastically strained (K) 
state shown in Fig. 3a which will be designated 
by lower case Greek letters. It may be visualized 
as being generated from the (K) state of Fig. la 
by having the rightmost half of the body undergo 
a phase change. The phase change is such that the 
vertical dimensions of  the body decrease in length. 
It is also clear from Fig. 3a that the two phases are 
perfectly coherent across the interphase boundary, 
i.e. the displacements are continuous across the 
boundary. It is also possible to represent the 
distortion across the boundary in terms of an 
array of virtual dislocations shown dotted in much 
the same way as was done in Fig. lc. Since these 
are not real dislocations, the reference circuit 
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Figure 2 Representation of Fig. ld  in terms of a discrete 
atomistic picture. 
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Figure 3 (a) Fully coherent  two-phase interface boundary.  (b) (K) state configurat ion of (a) drawn in terms of a common 
lattice. (c) (K) state configurat ion of  (a) after addi t ion of crystal lattice dislocations to remove long range strains. (d) (k) 
state configurat ion of  (c) drawn in terms of  a common  lattice. (e) (k) state configurat ion of (c) after complete annihi- 
la t ion of misfit and interface dislocations. (f) (k I) state configurat ion of  (e) drawn in terms of a common  lattice. (g) 
Semi-coherent  configurat ion intermediate  between those shown in (c) and (e). (h) (~) state configurat ion of (a) after 
perfect  tearing with surface tension present.  
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1-2-3-4-5-6-1 in Fig. 3a contains no closure failure. 
However, similar to Fig. l d, we are able to 
construct a common lattice as shown in Fig. 3b 
where it is now possible to represent the coherent 
two-phase interface in terms of an array of surface 
dislocations, or perhaps more appropriately, an 
array of interface dislocations. 

The coherent interface of Fig. 3a contains long- 
range strains which can be removed by the 
addition of misfit dislocations, which are in fact 
crystal lattice dislocations (CLD), to the right- 
most phase as shown by the solid dislocation 
symbols in Fig. 3c. Such states that contain misfit 
dislocations will be denoted by lower case Latin 
letters, i.e. (k). As anticipated, the Burgers circuit 
in Fig. 3c picks up the single misfit shown by the 
dotted arrow along line 2-3, but fails to detect the 
virtual dislocations. If, however, the (k) state is 
represented in terms of a common lattice by some 
suitable co-ordinate transformation, the (k c) state 
shown in Fig. 3d obtains. It follows from this 
figure that the misfit dislocations of strength four 
is just balanced by four interface dislocations, 
thus accounting for the absence of long-range 
distortions. Important to note is that the inter- 
phase boundaries in Fig. 3c and d, in spite of the 
fact that they contain misfit dislocations, are still 
fully coherent. The boundary, however, can be 
made fully noncoherent by allowing the virtual 
dislocations in Fig. 3c to combine with the misfit 
dislocations so as to generate the (k t) state con- 
figuration shown in Fig. 3e. The Burgers circuit 
portion of this same figure is again reproduced in 
Fig. 3f but in terms of a common lattice. Note 
that since the interface dislocations of opposite 
sign combine completely with one another, as 
contrasted with Fig. 3c and d, all traces of elastic 
distortion are removed. The configurations of 
Fig. 3c and d, on the one hand, and Fig. 3e and f 
on the other, represent limiting cases of arbitrarily 
large and vanishingly small interface energies, 
respectively. In the former case, the interface 
dislocations cannot move since they create faults, 
i.e. the atoms are not in line with one another 
across the interface. In the latter case, they move 
with no restriction since this energy is vanishingly 
small. In the case of intermediate interfacial 
energy, the (k s ) state configuration shown in 
Fig. 3g obtains. Here, only a portion of the 
interface dislocations move to the misfit dis- 
locations and annihilate with it [2]. The re- 
construction of Fig. 3g in terms of a common 
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lattice is rather straightforward and will therefore 
be omitted. 

It is now clear at this point that the non- 
alignment of atoms across the boundary in Fig. 3e 
and g gives rise to an interphase energy which is 
analogous to the surface energy of Fig. lc. Since 
this energy also restricts the movement of inter- 
face dislocations, it may also be viewed as giving 
rise to a lattice friction force acting on these 
dislocations. Finally, for completeness, Fig. 3h 
shows the perfectly torn state of Fig. 3a. The 
surface tension has caused the length of both 
surfaces to decrease with the subsequent 
generation of surface dislocations in much the 
same manner as that described for the perfect 
reference body of Fig. lc. Analogous tearing could 
also be performed on the states shown in Fig. 3b 
to g with and without surface tension present to 
yield similar results which, for convenience will 
be omitted here. 

4. Analysis of the surface energy associated 
with a finite solid of arbitrary shape 

A discrete dislocation analysis of the surface 
energy associated with a finite body is based on 
the earlier models developed for an externally 
applied stress or for an internal source of stress 
[3]. It has been verified therein that the distortion 
arising from any source of stress in a finite solid 
can be represented in terms of two sets of surface 
dislocations with mutually orthogonal Burgers 
vectors situated on the surface of the solid [1 ,7] .  

The elastic stress field within a finite body due 
to the effects of surface energy can be obtained 
by first considering an infinite stressed body. A 
region within the infinite body, ABCD, of the 
same dimensions as the finite body is chosen as 
shown in Fig. 4a. The attractive force offered 
by the surrounding medium on the surface of 
the finite region ABCD is illustrated by the arrows 
corresponding to the component Oyy. The ideas 
developed using this particular stress component 
are also applicable to the other components of 
stress. Fig. 4a shows schematically the two 
dislocation arrays required to maintain continuity 
of displacements in the finite region and around it. 
While such arrays are present everywhere along 
the boundary of the region ABCD, only one set 
is shown in order to simplify the figure. The 
two dislocations to the right of the boundary 
belong entirely to region ABCD while the two 
to the left of the boundary belong to the infinite 
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Figure 4 (a) Schematic illustration of the two surface dislocation arrays in region ABCD and surroundings which form 
in order to maintain continuity of displacements and to satisfy the surface boundary conditions. The dotted symbols 
correspond to that portion of the dipole which decreases the free surface area. The full line representation corresponds 
to the edge dislocations which are responsible for the stress field. (b) The finite region is cut from the infinite region 
and separated from it. (c) Same as (b) except that a prismatic loop is nucleated in the finite region ABCD and allowed 
to expand and annihilate with a dislocation in the dipole and form an extra plane of material. (d) The finite region is 
inserted back into the infinite medium. (e) Same as (d) but after a reverse stress is applied to eliminate the dislocations 
of opposite sign. (f) The finite region ABCD is removed and opposite stresses maintained in order to satisfy the 
boundary conditions on the surface of the hole ABCD. The surface arrays are distributed on the surface of the finite 
region to yield the required stress field. 

body.  Of the two dislocations, the one with the 
dot ted  representation corresponds to the reduced 
free surface [7] while the one with the full line 
representation gives the stress field. The surfaces 
are now stress free so that  the region ABCD can 
be cut from the infinite body,  as shown in Fig. 4b. 
A prismatic loop is next introduced into the finite 
region ABCD so that  when the prismatic loop 

expands, the dislocations with opposite signs an- 
nihilate, in turn leaving a dislocation on the 
surface, as shown in Fig. 4d. Now the finite region 
ABCD can be inserted back into the infinite body  

as shown in Fig. 4d. As a next  step, the infinite 
body is subjected to reverse stresses so that  the 
finite region will now be associated with the 
dislocation array, as shown in Fig. 4e. Finally, 
the finite region ABCD containing the dislocation 
array is taken out of  the infinite body  with 

opposite stresses maintained on the surfaces of  the 
hole in the infinite body,  as shown in Fig. 4f. The 
region ABCD containing the surface dislocation 
array, now represents the state of  stress in a 
finite body with constant compressive stresses. 
The stress field due to the dislocation array on 
the surface of  the finite body  balances the com- 
pressive stress arising from the absence of  the 
surrounding medium which, in turn, is also the 
same as the effect of  surface energy. It is useful 

at this stage to employ a different nota t ion to 
indicate the origin of  the stress, namely aii which 
arises due to the presence of  surface dislocations 
and cssi as that arising from the absence of  the 
surrounding medium. These two are equal on the 
surface as shown in Fig. 4f. The fundamental  
relation between the dislocations and the surface 
energy is easily obtained by considering the total  
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energy of the medium, which consists of the strain 
energy and the surface energy. The strain energy 
term can be written in its most general form as 

Ee = 1 fv oijeijdv = �89 fs ~ 

where v is the volume of the solid and s is the 
surface area surrounding the solid. It is useful to 
know that crij in the volume integral corresponds 
to the stress everywhere within the finite region, 
while this same quantity in the surface integral 
corresponds to the stress on the surface. It is the 
surface integral representation which is helpful 
in relating the effect of surface energy to surface 
stress. The surface energy contribution can be 
put in the form 

E7 - - - f s  7ds. 

The equilibrium configuration is obtained by 
noting 

dEe + __dE 7 
d---s- ds -- 0 so that ctl.iuinj = 7. (6) 

In Equation 6, oiini is the force per unit area 
acting on a plane whose normal is hi, and Fiui, 
where F i = olin j, has the dimensions of force per 
unit length, the same as that for surface tension. 
Specifically, for i = 1, Equation 6 can be written 
a s  

o n u l n l  +csl2uln2 = 7. (7) 

The above equation is valid for a finite solid. If  
the finite region corresponds to that of a liquid, 
the shear stress components vanish, i.e. o~z = 0 so 
that ~ u a n i = 7 indicating that only hydrostatic 
stresses maintain the surface tension within a 
liquid of finite dimension. 

The fundamental relation given by Equation 6 
between the stresses in a solid and the surface 
tension can also be reformulated in terms o f  
dislocations arising from surface energy effects as 
illustrated in Fig. 4f. The stress field due to the 
dislocation array on the surface gives rise to the 
strain energy within the finite medium and the 
decrease in surface associated with the dislocations 
accounts for the decrease in surface energy. 
Previous dislocation models of surface tension 
[8] involved the presence of crystal dislocations 
situated at some distance from the surface by two 
or three atoms. This restriction becomes somewhat 
artificial in view of the definition of  a surface 
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dislocation which can, in fact, remain on the 
surface and not necessarily have associated with it 
an extra half plane of atoms, i.e. be in the form of 
a crystal lattice dislocation. The discrete dislo- 
cation analysis is carried out by minimizing the 
total energy required to introduce surface 
dislocations onto the surface. In particular 

E T = E e + g 7 ( 8 )  

where 

E e -~ E s + E I ,  sothat  E T = E s + E I + E . r ,  

(9) 

where E s is the self energy and E I the interaction 
energy of  the dislocation array while E v cor- 
responds to the increase in surface energy due to 
presence of the dislocations. These results may be 
illustrated for the array with Burgers vector 
parallel to the surface for which 

N ~ N 

Es + EI = ~, j_i "c~bidxi = ~, r ~ b i x l  
i=1 R i=1 

(10) 
where N is the total number ofdislocations, R is 
the size of the crystal, and ~xy the shear stress 
acting on each dislocation. The dislocation with 
Burgers vector b i is considered as being brought 
from infinity to the position xl. For simplicity in 
the above equation, ~'xy is assumed to be constant. 
The surface energy lost due to the formation of 
the dislocations can be written as 

N 

E~ = -- ~ 7hi. (11) 
i=1 

If rxyS is the shear stress arising from surface 
energy effects, namely that represented by arrows 
pointing towards the finite region ABCD in Fig. 4f, 
the above equation takes the alternate form 

N 

E~ = -- Z r~ybixi. (12) 
i = l  

The total energy of the configuration E T given 
by Equation 8 can be minimized with respect to 
the Burgers vectors and postion co-ordinates of 

$ each dislocation so that rx~ = rxu, i.e. the shear 
stress due to the array is balanced by the surface 
shear stress due to surface energy. Similar 
reasoning can be extended to the other components 
of the stress field. 

The results shown in Fig. 5a indicate that the 
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width are shown.  

major effect of surface energy is to generate a 
dislocation array with Burgers vectors parallel to 
the surface, also called the primary array. The 
dislocations in the array with Burgers vectors 
perpendicular to the surface have very small 
Burgers vectors and for this reason are called the 
secondary array. The results of the discrete dislo- 
cation analysis for a body with rectangular shape 
are shown in Fig. 5b where only the primary array 
is determined since the secondary array has 
negligible Burgers vector. The primary array is 
again found to remain uniform except at the 
corners. It can also be concluded that the Burgers 
vector of the array increases with decreasing 
thickness of the finite body as seen from Fig. 5b. 
The oxx component of stress for the arrays shown 
in Fig. 5a and b is plotted as shown in Fig. 6a and 
b, respectively. These shear stresses are seen to 

become smaller in the interior of  the finite body. 
The stress level in a finite body with smaller 
thickness is higher due to the larger Burgers vector 
of the primary array. Fig. 6c shows the ox= 

component of stress due to the array given in 
Fig. 5a. The stress level again falls off rapidly with 
distance from the surface. The above results enable 
us to conclude that the stress components on the 
surface of a finite solid reach a value equal to 
the surface stress developed due to the presence 
of surface energy. However, the stress components 
decrease rapidly from the surface of the finite 
body into the interior. 

4.1. Numerical analysis of  the surface 
energy associated wi th  a l iquid of 
f in i te dimensions 

The surface dislocation model developed for a 
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representation indicates the negative stress levels 
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is drawn to scale. (b) Same as (a) except that the 
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200 A. (c) The axx component of the stress field 
due to the array shown in Fig. 5a plotted at various 
stress levels. The four stress levels plotted in units of 
10-SG/41r(l--v) are 0.1, 0.5, 1 and 2. The re- 
presentation of the stress levels is the same as 
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finite solid can easily be extended to a liquid of  
finite dimensions. In the past, the properties of  
dislocations have been used to determine viscosity 
in terms of a heavily dislocated crystal [9]. In 
order to illustrate the discrete dislocation analysis 
with respect to the surface tension of a liquid of 
finite dimensions, a two dimensional circular film 
is considered, as shown in Fig. 7a. The surface 
dislocations are distributed uniformly along the 
circumference of the body. 

The circular region is divided into 36 sectors, 
each containing a dislocation with Burgers vector 
tangential to the surface. Let the initial radius be 
r0 and the sum of the Burgers vectors of all the 
surface dislocations be b. The array shown in 
Fig. 7a does not have a resultant shear stress 
component inside the circular region. The 
hydrostatic pressure due to the array, represented 
by a constant P, contributes to the strain energy 
as follows, 

E e = Pb(?" 0 - - b / 2 r r ) / 2 .  (13)  

The surface energy lost due to the formation of 
the dislocation array is 

G = vb. (14) 

The balance of strain energy with loss of  surface 
energy gives 

b = 2~r (to -- 27/P), (15) 

in turn connecting the total Burgers vector of the 
surface array to the initial radius and the surface 
energy. The pressure P is a function of the 
distribution of the surface array. The results of  the 
discrete dislocation analysis are presented for two 
different liquids, as shown in Fig. 7. 

It is now a simple procedure to determine the 
shape of a drop of liquid lying on the surface of a 
solid. Fig. 8a is a schematic illustration of the 
surface dislocation arrays present on the surfaces 
of the liquid droplet and the finite solid. The array 
on the surface of the liquid droplet maintains the 
hydrostatic pressure within the liquid droplet and 
the two arrays on the surface of the solid maintain 
the surface stresses on the surface of the solid. 
The dislocation array at the interface screens 
the stress components so that only hydrostatic 
stresses are present in the liquid medium. The 
angle 0 shown in the figure corresponds to the 
contact angle. 

Fig. 8b shows the shape of the droplet deter- 
mined from a discrete dislocations analysis. The 
surface arrays on the surfaces of  the solid are 

neglected in order to simplify the calculation. It 
should also be pointed out that when the 
dimensions of  the finite solid are large compared 
to that of the liquid region, the Burgers vector of  
the surface arrays on the solid become very small 
due to the high shear modulus of the solid. 

The computational procedure in the deter- 
mination of the shape of the droplet consists of an 
initial circular droplet which is allowed to settle 
on the surface of a solid and to alter its shape, 
maintaining constant volume while minimizing the 
total energy of tile configuration. The array shown 
in Fig. 8b in the liquid medium has no resultant 
shear stress component. The hydrostatic pressure 
due to the array represented by a constant P, 
contributes to the strain energy 

P 
c~ ~[R(0)--b (0)] b(O)dO (16) 
"t71 

where R (0) and 0 are the co-ordinates of a point 
on the surface from the reference co-ordinate 
system chosen in the liquid medium and b (0) is  
the Burgers vector of the dislocation present on 
the surface at that point. 0, and 02 are the angles 
shown in Fig. 8a. The surface energy lost due to 
the formation of the surface dislocation array is 

2 G = 7, b(0)d0 (17) 
1 

where 7, is the surface energy of the l iquid- 
vacuum interface. At the interface 

3'1b, cos 0, = (73 - -72)bs ,  

r o = I O O O ~ ,  

) , ' = 7 2 . 5  ~ = t . 5 x l O  9 b i  = 0 . 0 2 3  

7 ' = 4 8 0  /J- = 2 .5  x I 09  b i  = 0 . 0 9 8  

Figure 7 A two-dimensional circular film of liquid of 
radius %. Surface dislocations each of Burgers vector b i 
are spread along the circumference at equal intervals of 
10% The value of b i for two sets of liquids is shown in 
the figure. 
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Figure 8 (a) Schematic illustration of the surface dislocation model of a liquid droplet on the surface of a solid of 
finite dimensions. The surface dislocations on the surface of the liquid have their Burgers vectors tangential to the 
surface. The two sets of surface dislocation arrays with Burgers vectors mutually orthogonal to each other on the 
surface of the solid maintain the surface stresses within the solid. The interface array has the Burgers vector parallel 
to the interface so that the shear stresses from the solid are screened and only hydrostatic stresses axe present within 
the liquid. (b) Shape of a liquid droplet lying on the surface of a solid with contact angle equal to 53 ~ One half of 
the region of the droplet is divided into eight sectors. The co-ordinates ri, 0 i and the Burgers vector b i of a dislocation 
in each sector are shown in Table I for the indicated values of 71,3"2 and 3'3. (c) Shape of a droplet of liquid on the 
surface of a solid with contact angle equal to 124 ~ The co-ordinates r i ,  0 i and the Burgers v e c t o r  b i of a dislocation 
in each sector are shown in Table II for the indicated values of 3't, 3"2 and 3'3. 

which determines the contact angle 0 equal to 

180 --  0 t .  In Equation 18, 3'2 is the surface energy 
of the l iquid-sol id  interface, 3'3 that of the so l i d -  
vacuum interface, and b s the sum of the Burgers 
vectors of the dislocations at the sol id-l iquid 

interface. When the contact angle 0 is 180 degrees, 
the droplet becomes a two dimensional circular 
film with R ( 0 ) = r o ,  b ( 0 ) = b / 2 r r ,  01 = 0  and 
02 = 27r so that Equations 13 and 14 are obtained 
from the above analysis. 

In order to facilitate the computation,  the area 
comprising one half of the droplet was divided 
into eight sectors. Within each sector the Burgers 

1 7 2 8  

vector of the surface dislocation is tangential to 

the surface of the droplet. The radius vector r i and 

the angle 0 i in each sector are varied along with 

Burgers vector bi  so that the total energy of the 
medium remains at its minimum. Table I shows 
the results of the discrete dislocation analysis and 
Fig. 8b illustrates the shape of the droplet drawn 
to scale. The shape of the droplet depends on the 

relative values of 71, 72 and 73 as indicated in 
Table 1. In particular the shape for 3'3 > 3'2 is 
shown in Fig. 8c and Table II gives the results 
obtained by minimization of the total energy. The 
present results agree closely with the classical 



TABLE I The radius vector ri, the angle 0 i and the Burgers v e c t o r  b i in each of the eight sectors in one half of the 
liquid droplet. 3"i = 72.5, 3"= = 80 and % = 40 

1 2 3 4 5 6 7 8 

ri(A) 500 1453 1740 1782 1782 1790 1797 1782 
01(radians) 1.219 0.414 0.275 0.317 0.223 0.124 0.136 0.436 
bi(A) 0.001 0.747 0.240 0.001 0.002 0.003 0.130 0.067 

methods of analysis [10] if it is noted that the 
Burgers vector of the surface dislocations is very 
small compared to the radius of  curvature in 
Equation 15 so that ro = 27/P.  

The results of the discrete dislocation analysis 
when applied to solids and liquids illustrates the 
use of  surface dislocations in representing the 
resultant stress field that arises due to surface 
tension. The surface dislocation representation 
includes both the strain energy and the surface 
energy in the total energy of the medium. 

4.2. Numerical analysis of the dislocation 
configuration associated with a 
two-phase interface 

The structure of  a semi-coherent interface in terms 
of the rearrangement of interface dislocations 
and partial annihilation with the misfit dislocation, 
as elucidated earlier, will be analysed using the 
discrete dislocation method of analysis. The 
method of continuous distribution of dislocations 
has already been employed earlier to determine 
the structure of a semi-coherent interface [2]. 
However, the frictional stress required to prevent 
the complete annihilation of interface dislocations 
with the misfit dislocations has been assumed to 
be of a simple form so as to obtain closed form 
solutions for the relevant singular integral equation. 
It is to be realized that the frictional stress and 
interface energy are not different entities and 
should be related by 

rrb~ = 7 (19) 

where rf is the frictional stress, bi the Burgers 
vector of the dislocation responsible for the 
formation of the step and 3' the interfacial energy. 
The frictional stress required to move a dislocation 
can be assumed to be of  the familiar form [2], 

r~ = (~G1 bm/2rrd)  sin (2rr~P/brn) (20) 

where dp is the disregistry produced between any 
two atoms across the interface, bm the Burgers 
vector of the misfit dislocation, d the repeat 
distance between misfit dislocations and ~, a 
parameter used to change the magnitude of the 
frictional stress. Analytical solutions to the 
integral equation giving the equilibrium distri- 
bution of interface dislocations could not be 
obtained using Equation 20. Therefore, the 
discrete dislocation method was employed to 
determine these equilibrium configurations. The 
dislocation model employed is shown in Fig. 3g 
where three misfit dislocations along with the 
interface dislocations around them are considered. 
The total energy, Ea,, of the configuration in the 
centre consisting of a misfit dislocation and the 
accompanying interface dislocations is minimized. 
In particular 

ET = Es +E~M +EI ,  I + E F ,  (21) 

where Es is the self energy of the interface array 
and the misfit dislocation, ELM the interaction 
energy o f  the interface array with the misfit 
dislocations, EI, I the interaction energy of each 
dislocation in the interface array with otl,er 
dislocations and Ev the frictional energy expended 
in moving the interface array against r,. In the 
determination of the interaction energy terms with 
neighbouring arrays, care should be exercised in 
considering only one half of the energy terms 
since the interaction energy is shared by both the 
regions. The frictional stress acting on each 
dislocation depends on the step already produced 
by the movement of preceding interface dislo- 
cations. The resultant dislocation configuration 
obtained using G1 = 7 . 1 4 x  101~ dyncm -2 and 

TABLE II The radius vector r i, the angle 0 i and the Burgers vector b i in each of the eight sectors in one half of the 
liquid droplet. 3"1 = 72.5, 3'2 = 60, 3"3 = 80 

1 2 3 4 5 6 7 8 

~(A) 14 3382 3154 2923 2595 2005 1591 1162 
0i(radian~ 1.568 0.067 0.141 0.087 0.122 0.248 0.165 0.744 
hi(A) 0 0.0017 0.2074 0.1643 0.0010 0.0010 0.1555 0.1497 
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Figure 9 (a) The structure of the interface con- 
sisting of the interface and misfit dislocations in 
the semi-coherent state for G 2 = G1 and c~ = 1. 
(b) As (a) but  with a -- 2. 
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v2 = vl = 0.333 is shown in Figs, 9 to 12 for two 
combinations of the shear moduli of the two 
phases and various values of a. The step height 
produced by the movement of each interface 
dislocation is also shown. The interface dislo- 
cations are found to stop at positions where a step 
would have been created if further movement of 
the dislocation took place and thus expend 
frictional energy or create equivalent interfacial 
energy. The number of interface dislocations 
remaining after annihilation increases with 
increasing friction as illustrated by the increase in 
value of a and decreases with increasing shear 
modulus of the second phase G2. 

While the general results of the present 
calculations employing discrete dislocation 
methods agree with those obtained earlier [2], the 

details of the dislocation configuration at the 
interface are different due to different form of 
frictional stress used in the present analysis. It 
should also be pointed out that the misfit dislo- 
cation is assumed to be nucleated at the interface 
in the present calculations. 

5. Conclusions 
The formation of any new surface involves the 
breaking of atomic bonds, which in turn increases 
the energy of the body. In order to minimize this 
surface energy, the total area of the surface 
decreases, in turn giving rise to an internal stress 
within the body. It is shown that the decrease in 
surface area is equivalent to the introduction of a 
continuous distribution of surface dislocations on 
the surface of the body. It is the surface dislo- 

Figure 10 (a) As Fig. 9a but  with ~ = 5. (b) As 
(a) but  with a = 10. 
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Figure 11 (a) As Fig. 9a except G 2 --- 10G 1 and 
a = 1. (b) As (a) but with a = 2. 
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cations which give rise to the strain energy within 
the body. Equilibrium is established when the 
increase in this strain energy is just balanced by 
the corresponding decrease in surface energy 
occasioned by these surface dislocations. This 
decrease in surface energy is also related to the 
stresses acting on the free surface o f  the body, 
i.e. surface tension. In general, for a solid with 
an arbitrary shaped surface, all components o f  
stress are present within the body, whereas for 
a liquid, no shear stress components are allowed, 
so that the surface of  the liquid must adjust its 
shape accordingly. Numerical calculations have 

been carried out for all of  the cases as well as for 
liquid droplets in contact with solids. These same 
free surface energy considerations apply also to 
external surfaces such as interphase boundaries. 
Under these conditions, interphase boundary 
dislocations, which are the equivalent of  surface 
dislocations, are formed. Rearrangement of  these 
boundary dislocations can occur so as to lower 
the elastic strain energy, but only at the expense 
of  increasing the surface energy of  such boundaries. 
The resistance to the motion of  these dislocations 
is equivalent to a lattice friction stress acting 
within the boundary. This detailed model o f  an 

Figure 12 (a) As Fig. l la  but with a = 5. (b) 
As (a) but with a = 10. 
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interphase boundary  allows an exact description 

to be given for a fully coherent,  a fully incoherent 
and a partially coherent interface. 
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